If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x+45=0
a = 1; b = -16; c = +45;
Δ = b2-4ac
Δ = -162-4·1·45
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{19}}{2*1}=\frac{16-2\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{19}}{2*1}=\frac{16+2\sqrt{19}}{2} $
| -3(2x+1)=2(5x-3) | | -0.03x^2+0.84x+0.12=0 | | -7p=-28p-42 | | 4(x-2)+5=0 | | -1.7x=8(x+2.14) | | -12+4x=-5x-111 | | p4+ 9=12 | | -x/7=8x/7 | | 5/3x+8=-2/x-1 | | Y=2x+10(0,3) | | -10+4x=-3x+60 | | 8x−12=−172 | | 7.91x+81=62.5681+9x | | x-3/4=7/1/2 | | -10x+4x=-3x+60 | | 402.44=210+.68x | | 45+15x=50+10x | | 9/2x-5/6=-13/6x | | -16+5x=14(3x+7) | | 10x+4x=-3x+60 | | 3x-10+5x/30=180 | | 2(x-5)+3x=8+5x | | 3+1/4)a=31 | | (3x-1)=(5x-8) | | 24=1x-12 | | 4(1x+1)+x=5(1x-1)+9 | | 10+3x=-11x-186 | | 1.94x+()/40x^2+(-(2(1.15x+8.5)*8x)/40x^2+4.32=0 | | 180-x=47(90-x) | | 7x=1=36 | | 3-11a=9-5a | | (4/5)=(5/3x-2) |